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Are healthy smokers really healthy?
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Abstract

Cigarette smoke contains more than 4500 chemicals which have toxic, mutagenic and carcinogenic effects. Strong
evidences have shown that current smokers take a significantly higher risk of cardiovascular diseases, chronic
obstructive pulmonary disease (COPD) and lung cancer than nonsmokers. However, less attention has been paid to
the smoking induced abnormalities in the individuals defined as healthy smokers who are normal with spirometry,
radiographic images, routine physical exam and categorized as healthy control group in many researches. Actually,
‘healthy smokers’ are not healthy. This narrative review focuses on the smoking related pathophysiologic changes
mainly in the respiratory system of healthy smokers, including inflammation and immune changes, genetic
alterations, structural changes and pulmonary dysfunction.
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Background
Cigarette smoke is a multipotent mixture of thousands of
components that have toxic, mutagenic and carcinogenic
properties. Numerous chemicals are added to the tobacco
content, paper, and filter during the manufacturing process.
Among the mainstream smoke emissions from cigarettes,
polycyclic aromatic hydrocarbons, N-Nitrosamines, nickel,
cadmium, chromiun, arsenic, misc organic compounds are
known carcinogens. Nicotine, carbon monoxide, acrolein
and reactive oxidant substances are toxins that can cause
immune dysfunction. Moreover, nicotine is the predomin-
ant addictive cigarette smoke constituent [1]. Epidemio-
logical studies demonstrate that smoking is a significant
risk factor for cardiovascular diseases [2], chronic ob-
structive pulmonary disease (COPD) [3] and lung cancer
[4]. Thus, much work has been done on the molecular
and cellular abnormalities in those patients who have a
smoking history with smoking related diseases, trying to
find the differences in comparison with healthy non-
smokers and the possible mechanisms. However, until re-
cently, there has not been much focus on the individuals
categorized as healthy smokers who are asymptomatic
with normal spirometry, radiographic images and physical
exam, appearing to be much healthier than those smokers
who have already developed diseases [5]. Interestingly,

when compared with subjects who never smoked, the
point that asymptomatic smokers with normal physical
exam are healthy is much less obvious. Actually, healthy
smokers are not healthy. Many studies have detected
pathological changes in healthy smokers. In the present
paper, we will mainly review the pathophysiologic changes
in the respiratory system of smokers with normal physical
exam, including inflammation and immune changes,
genetic alterations, structural changes and pulmonary
dysfunction.

Inflammation and immune changes
The analysis of the induced sputum, expired breath con-
densate (EBC), bronchoalveolar lavage (BAL) and biop-
sies of lung tissue from ‘healthy smokers’ show strong
evidences of inflammatory and immune changes in the
airway.

Induced sputum
The presence of neutrophils in sputum is one of the
most common landmarks of inflammatory changes
brought by smoking. As early as 1992, Swan et al. [6]
found smokers with a greater number of pack years
tended to have significantly higher levels of all cytomor-
phologic components, including neutrophils. Moreover,
the neutrophil rating declined over the follow-up in
quitters, while it increased among non-quitters. In fact,
lots of researches have demonstrated elevated level of
both the percentage and absolute number of neutrophils
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in induced sputum from healthy smokers as compared
with nonsmokers [7–9].
The phenotype of macrophages in induced sputum is

definitely altered by smoking. Domagala- Kulawikan et
al. [10] detected increased expression of CD54 and
CD71, which had effects on the metabolic activity of
macrophages, in induced sputum of smokers compared
with nonsmokers. CD54 is an adhesion molecule that
mediates adhesion and the cell-cell interactions of mac-
rophages, while CD71 has the function of proliferation
and maturation [10, 11]. The up-regulation of CD54 and
CD71 indicate Besides, the proportion of CD14 positive
macrophages in induced sputum, which has been proved
to play a role in macrophage activation in infection and
inflammatory processes in COPD, was higher in smokers
than nonsmokers [10, 12].
Biochemical analysis also showed a lower percentage of

CD8+T lymphocytes and a higher ratio of CD4+/CD8+

T-cells in induced sputum of healthy smokers as com-
pared with that of nonsmokers. After 6 months-cessation,
the percentage of CD8+ T-cells increased in quitters and a
ratio of CD4+/CD8+ decreased [13]. As the major activity
ofCD8+ T lymphocytes is the facilitation of the rapid reso-
lution of acute viral infections, the lower percentage of
CD8+ T-cells suggests that smokers may have a deficit in
cell-mediated immunity in the lung and may explain the
increased susceptibility of smokers for viral infections.
The alteration of other chemicals or cytokines that repre-
sents inflammatory and immune processes in healthy
smokers were also found in their induced sputum. Taka-
nashi with his team [14] observed a significant reduction
in IL-10 levels and a small number of IL-10-expressing
cells in the sputum of patients with asthma and COPD
and healthy smokers compared with nonsmokers. The de-
creased level of IL-10, an anti-inflammatory cytokine with
major down-regulatory effects on inflammation, may
contribute to the development of chroni cairway inflam-
mation among smokers. Both CCL5 and CCR1 were up-
regulated on inflammatory cells of induced sputum of
healthy smokers compared with nonsmokers [15, 16]. Ac-
cording to one of the latest studies, the level of IL-6, IL-8
and tumor necrosis factor alpha (TNF-α) which were
positively correlated with smoking load (pack-years) in in-
duced sputum of healthy smokers were higher than that
of nonsmokers [17]. All the three cytokines are important
markers of inflammation and play key roles in the persist-
ence of inflammatory process in COPD [18].

Expired breath condensate (EBC)
Much attention has been paid to the changes brought by
smoking in smokers’ exhaled breath condensate (EBC).
Many studies have found lower pH values in EBC, as
reflected airway inflammation, in diverse inflammatory air-
way diseases, including bronchial asthma, bronchiectasis

and COPD [19]. In healthy smokers, mean PH values lower
than those observed in healthy non-smokers have always
been reported. The ECLIPSE study found that EBC PH
was significantly reduced both in COPD patients and
chronic healthy smokers compared to healthy non-
smokers [20], but there were no differences between
COPD patients and healthy smokers. This result is consist-
ent with Koczulla’s [21] and Nicola’s study [22]. Since
acidification of the airways reflects airway inflammation,
the lower PH value in healthy smokers’ EBC suggest the
inflammatory changes in their airways.
Chronic smoking also alters the level of inflammatory

markers in EBC of smokers who remain symptomless
and seem to be healthy on the surface. Elevated concen-
trations of IL-6 in EBC, a pro-inflammatory cytokine
produced by epithelial cells and macrophages in the
airways, was observed in healthy smokers compared to
nonsmokers [23]. Higher concentrations of leukotriene
(LT)B4, another marker of inflammation, was also de-
tected in EBC of both COPD patients and healthy
smokers than in nonsmokers [23]. Garey with his team
[24] demonstrated that neutrophil chemotactic activity
were significantly higher in EBC of smokers in compari-
son to non-smokers. This observation was reconfirmed
by Corhay after three years and it was in keeping with
the fact that neutrophils were well known to be in-
creased in the airways of smokers [25]. Besides, smokers
also showed higher TNF-α levels in EBC [26].
In recent years, evidence has emerged that oxidative

stress plays a crucial role in the development and per-
petuation of inflammation. Higher 8-isoprostane and
H2O2 levels in EBC of subjects with COPD and smokers
than non-smokers have been reported [27]. Isoprostanes
are produced by ROS mediated peroxidation of arachi-
donic acid. The oxidative stress brought by smoking also
promotes the inflammatory process.

Bronchoalveolar lavage (BAL)
The first paper detailing BAL dealt with normal values
was published in 1974 [28]. Over the following years,
BAL has been used to investigate inflammatory and im-
mune processes in the lower respiratory tract which is
able to give us a deeper understanding of pathophysio-
logic changes brought by smoking.
Typically smokers have a decrease of CD4+/CD8+

caused by higher percentage of CD8+ T-cells in BAL as
compared with nonsmokers [29]. The same change of
T-lymphocyte subsets was also demonstrated in the lung
tissue of healthy smokers, but was in contrast with the re-
sult detected in induced sputum of smokers that de-
creased proportion of CD8+T lymphocytes with increased
ratio of CD4+/CD8+ T-cells. One explanation would be
the inflammatory microenvironment in airway lumen
sampled by induced sputum is different from that in the
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BAL and airway epithelium sampled by bronchial biopsies
[30]. Another reason would be smoking induced suppres-
sion of the trans-epithelial migration of CD8+ lympho-
cytes, increasing their number in the large airway wall,
while reducing their number in the airway lumen [31]. Be-
sides, among the subsets of CD8+T-lymphocytes, Yu et al.
[32] showed a significant trend for greater Tc1/Tc2 ratio
in BAL of patients with COPD and smokers compared
with nonsmokers. CD8+T-lymphocytes who are key in-
flammatory effector and regulatory cells have been proved
to play an important role in the inflammatory process of
COPD [33]. CD8+T-lymphocytes can be differentiated
into cells that synthesize interferon-gamma (IFN-γ) but
not interleukin-4 (IL-4) (Tc1 cells) or cells that synthesize
IL-4 but not IFN-γ (Tc2 cells) [34]. However, little is
known about which subpopulation is mostly involved in
the immuno-pathogenesis of COPD. The imbalance of the
two phenotypes was actually detected in the BAL of
smokers and patients with COPD.
Kuschner with his co-workers [35] observed greater

concentrations of monocyte chemoattractant protein
(MCP)-1 with increased level of IL-6, IL-8 and IL-1β in
BAL of control smokers as compared with nonsmokers,
moreover, the level of IL-8 and IL-1β were elevated in a
cigarette dose-dependent manner. Clara cell 10 kDa
protein (CC10), which may have a role in protecting the
respiratory tract from oxidative stress and inflammation
by inhibiting the expression and/or activity of proteins,
such as phospholipase A2, IFN-γ, and TNF-a was found
to be significantly decreased in BAL fluids of healthy
smokers in comparison with nonsmokers [36, 37].
Hence, a decrease of CC10levels in the peripheral air-
ways as a result of smoking may be associated with
enhanced pro-inflammatory process in the peripheral
airways of the smokers. Molecules mediating tissue dam-
age as matrix metalloproteinase (MMP)-9 and MMP-12
had either increased levels and/or enhanced activities in
samples from BAL of smokers as compared with non-
smokers [38, 39]. Surfactant protein A and D (SP-A, SP-D),
members of the collectin family which play a key role in in-
nate immunity in animal models [40], were decreased in
BAL of healthy smokers vs. non-smokers [41]. Therefore,
lower levels of SP-D caused by cigarette smoking may
weaken lung immunity in healthy smokers.
Alveolar macrophages (AM) are responsible for a

broad set of host defense functions including recognition
and phagocytosis of pathogenic material and apoptotic
cells. Various changes of smokers' alveolar macrophages
have been noted in several studies. The number and pro-
portion of AM in healthy smokers’ BAL are increased as
compared with nonsmokers [42, 43]. And AM from
smokers differ from those of nonsmokers in that they
are slightly larger, and contain more golgi vesicles, endo-
plasmic reticulumand residual bodies which contain

distinctive fiber-like inclusions [44, 45]. Besides the
ultrastructural alterations, the function of AM is also
changed. Compared with nonsmokers, alveolar macro-
phages of cigarette smokers has a significantly greater
esterase and protease activity with higher resting metab-
olism and enhanced lysozyme secretion [44, 46, 47].
However, studies showed AM of smokers had impaired
phagocytic capability [48]. More interestingly, in contrast
with elevated level of IL-6, IL-8 and IL-1β detected in
BAL of healthy smokers in comparison with non-
smokers, the decreased capacity of smokers’ AM to re-
lease IL-1, IL-6, IL-8 and TNF-α has been oberserved in
many studies and this decreased secretion of cytokines
may result in impairment of pulmonary immune re-
sponses in smokers with increased incidence of infection
[49–52]. One possible explanation would be that these
cytokines are produced not only by AM but other cells
in BAL. Another reason would be the increased number
of AM in BAL which lead to the impaired cytokine
secretion by smokers’ AM appearing to be offset.
Furthermore, smokers’ AM produces significantly more
superoxide anions that may contribute to the lung injury
[53, 54]. Cigarette smoke can also change the phenotype
of AM. Schaberg T et al. [55] found that much more
AM from smokers expressed CD11a, CD11b, CD11c
and CD18 as compared with nonsmokers. AM of both
healthy smokers and patients with COPD exhibited a
unique polarization pattern which was different from
nonsmokers’. The analysis from Shaykhiev et al. [56] re-
vealed that M1 polarization related genes which are rele-
vant to inflammation and cell-mediated immunity were
down-regulated in AM of smokers and COPD individ-
uals with a smoking history, while M2 related genes
closely associated with anti-inflammatory cytokines and
molecules implicated in tissue remodeling were up-
regulated. Therefore, the result from Shaykhiev et al.’s
study is consistent with the previous finding that decreased
capacity of smokers’AM to release pro-inflammatory cyto-
kines, suggesting AM may contribute to smoking related
diseases in a non-inflammatory manner.

Biopsies of lung tissue
Histopathological examinations help us find inflamma-
tory alterations in bronchial biopsies of smokers without
any symptoms, including vascular hyperplasia, submuco-
sal edema, inflammatory cell infiltrates and goblet cell
hyperplasia [57]. An abnormal cellular infiltrate into the
airway submucosa of smokers is always reported. Lams
et al. [58] found an increase in small-airway neutrophils,
total eosinophils and a trend toward an increase in CD
8 + cells in smokers as compared to nonsmokers. Two
studies from European countries confirmed a larger
number of CD3+, CD8+, CD68+ cells in the bronchial
submucosa of smokers compared with nonsmokers [59, 60].
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Isajevs et al. [61] demonstrated again a higher level of neu-
trophils, macrophages and CD8 + cells both in large and
small airways of smokers than nonsmokers, but lower
than that of subjects with COPD which is consistent with
Saetta’s finding [33] that smokers who developed symp-
toms of chronic bronchitis and chronic airflow limitation
had an increased number of CD8+ cells in the peripheral
airways as compared with asymptomatic smokers with
normal lung function, suggesting this inflammatory
process may be under control. Nuclear factor-kB (NF-kB),
a transcription factor regulating the expression of many
genes involved in inflammation [62], is increased in air-
ways of asymptomatic smokers as compared with non-
smokers [61, 63]. Besides, the expression of p65 NF-kB,
one of its activated form, is also elevated in the epithelium
of smokers with normal lung function and COPD patients
that correlated with a greater counts of macrophages,
neutrophilic leucocytes and CD8+ T cells in airway walls,
when compared to nonsmoking persons [61, 63]. The
level of CXCL6 and its receptor, CXCR1 which can induce
leukocyte recruitment and activation at sites of inflamma-
tion [64] are increased in the epithelium and submucosa
of healthy smokers respectively [65].
Moreover, Wang with his team [66] demonstrated the

toll-like receptor(TLR)5, expressed mainly on the apical
side of the epithelium, was down-regulated in healthy
smokers and smokers with COPD, compared to non-
smokers. The toll-like receptors are important compo-
nents of the respiratory epithelium host innate defense
and TLR-deficient mice develop exhibit impaired CD4+T
cell response to a flagellated pathogen [67], suggesting
suppression of airway epithelial TLR5 may contribute to
the increased susceptibility of smokers and smokers with
COPD to airway flagellated bacterial infection.

Genetic alterations
Epidemiological data has shown that long-term smokers
are taking a greater risk of developing COPD and lung
cancer as compared with nonsmokers. One of the possible
reasons is the smoking induced genetic alterations which
modify susceptibility to lung diseases. For smokers, those
up- or down-regulation of gene expressions with relevant
impaired biological function accelerate the progress of re-
spiratory disorders.

Genetic alterations in alveolar macrophages
Human alveolar macrophages, mostly residing on the re-
spiratory epithelial surface, are critical components of the
innate immune system. The gene expression of alveolar
macrophages has been altered in active smokers when
compared with nonsmokers. Table 1 shows up- or down-
regulated genes (>2.0 fold change) in AM of smokers
reported by at least two different studies [68–72]. The
MMPs comprise a family of at least 20 proteolytic

enzymes that play an essential role in tissue remodeling.
Several studies in animals and humans have provided evi-
dence that MMP12 (human macrophage elastase) is im-
portant in airway inflammation and the development of
emphysema. For instance, MMP12-knockout mice ex-
posed to cigarette smoke do not develop emphysema [73].
MMP12 up-regulation is also demonstrated to play a crit-
ical role in emphysema to lung cancer transition that is
facilitated by inflammation [74]. CYP1B1, a member of
the P450 superfamily with high affinity for inhaled tobacco
carcinogens, is commonly expressed in human lung [75].
Lao et al. [76] found that CYP1B1 Leu432Val polymorph-
ism acted as a risk factor for the carcinogenesis of lung
cancer.

Genetic alterations in airway epithelium
Airway epithelium, lined by a variety of specialized epi-
thelial cells, represents the first point of contact for
cigarette smoke. It not only plays a central role in the
barrier function of airway tract, but also responds to
environment-induced damage through the release of
pro-inflammatory cytokines and chemokines [77]. Genes
in functional categories are detected to expressed differ-
entially in the airway epithelium in nonsmokers and
smokers. Table 2 displays up- or down- regulated genes
in airway epithelium of smokers reported by more than
one study [78–83]. Up-regulation of antioxidant-related
genes in the airway epithelium of smokers are always re-
ported [78–83], including the glutathione pathway genes
(G6pd, GCLC, GPx2, GSR, NQO1), the redox balance
genes(ADH7, AKR1b1, AKR1C1, AKR1C2, AKR1C3),
the pentosephosphate cycle genes(PGD, TALDO1) and
the xenobiotic metabolism genes(CYP1B1). Although
catalase and the superoxide dismutase (SOD) contribute
a lot to antioxidative defense, the available data suggests
that gene expression of catalase and SOD do not differ
in the airway epithelium of smokers and nonsmokers
[78, 79]. Smoking induced down-regulation of intrafla-
gellar transport gene and cilia-related genes in the air-
way epithelium of healthy smokers is associated with
shorter cilia which affect mucociliary clearance [84, 85].
Healthy smokers have more active MUC5AC-core gene
expression compared to the nonsmokers [86]. MUC5AC
is one of the major secretory mucins expressed by sur-
face airway epithelial cells. The activated MUC5AC-core
gene expression in smokers may lead to mucus hyperse-
cretion. Down regulation of TLR5 and physiological ap-
ical junctional complex(AJC) gene in healthy smokers
may be involved in smoking-related susceptibility to
airway infection [66, 87]. Overexpression of ubiquitin
carboxyl-terminal hydrolase L1 (UCHL1) which is used
as a marker of lung cancer in chronic smokers may
represent an early event in the complex transformation
from normal epithelium to overt malignancy [88].
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Table 1 Up- and down- regulated genes (>2.0 fold change) in alveolar macrophages of ‘healthy smokers’

Gene symbol Description Regulation
(HSa/NSb)

Reference

PLA2G7 phospholipase A2, group VII up Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

SPP1 secreted phosphoprotein 1 (osteopontin) up Woodruff et al. [68], Graff et al. [69]

CYP1B1 cytochrome P450, family 1, subfamily B,
polypeptide 1

up Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

ATP6VOD2 ATPase, H+ transporting, lysosomal 38 kDa,
V0 subunit d2

up Woodruff et al. [68], Graff et al. [69]

SLC7A11 solute carrier family 7, member 11 (xCT) up Woodruff et al. [68], Graff et al. [69]

MMP12 matrix metallopeptidase 12 (macrophage elastase) up Woodruff et al. [68], Graff et al. [69] Heguy et al. [71]

FABP3 fatty acid binding protein 3 up Woodruff et al. [68], Graff et al. [69]

FLT1 fms-related tyrosine kinase 1 (VEGFR) up Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

A2M alpha-2-macroglobulin up Woodruff et al. [68], Graff et al. [69] Heguy et al. [71]

UCHL1 ubiquitin carboxyl-terminal esterase L1 up Woodruff et al. [68], Graff et al. [69]

S100B S100 calcium binding protein B up Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

CA2 carbonic anhydrase II up Woodruff et al. [68], Graff et al. [69]

SLC16A6 solute carrier family 16, member 6
(monocarboxylic acidtransporter)

up Woodruff et al. [68], Graff et al. [69]

SSBP3 single stranded DNA binding protein 3 up Woodruff et al. [68], Graff et al. [69]

TDRD9 tudor domain containing 9 up Woodruff et al. [68], Graff et al. [69]

C4orf18 chromosome 4 open reading frame
18 (DKFZp434L142)

up Woodruff et al. [68], Graff et al. [69]

DNASE2B deoxyribonuclease II beta up Woodruff et al. [68], Graff et al. [69]

SDC2 syndecan 2 up Woodruff et al. [68], Graff et al. [69]

MGST1 microsomal glutathione S-transferase 1 up Woodruff et al. [68], Graff et al. [69]

AGPAT9 1-acylglycerol-3-phosphateO-acyltransferase 9 up Woodruff et al. [68], Graff et al. [69]

TMTSF4 transmembrane 7 superfamily member
4 (DCSTAMP)

up Woodruff et al. [68], Graff et al. [69]

LIPA lipase A, lysosomal acid, cholesterol esterase up Woodruff et al. [68], Graff et al. [69]

CSF1 Colony-stimulating factor 1 up Heguy et al. [71], Rose et al. [72]

CCR5 Chemokine (C-C motif) receptor 5 up Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

CXCL11 chemokine (C-X-C motif) ligand 11 down Woodruff et al. [68], Graff et al. [69]

CXCL9 chemokine (C-X-C motif) ligand 9 down Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

SLC19A3 solute carrier family 19 (thiamine transporter) down Woodruff et al. [68], Graff et al. [69]

EMR1 egf-like module containing, mucin-like,
hormonereceptor-like 1 (F4/80)

down Woodruff et al. [68], Graff et al. [69]

CXCL10 chemokine (C-X-C motif) ligand 10 down Woodruff et al. [68], Graff et al. [69]

PDGFD platelet derived growth factor D down Woodruff et al. [68], Graff et al. [69]

IGF1 insulin-like growth factor 1 down Woodruff et al. [68], Graff et al. [69]

GBPS guanylate binding protein 5 down Woodruff et al. [68], Graff et al. [69]

C8B complement component 8, beta down Woodruff et al. [68], Graff et al. [69]

CD69 CD69 molecule down Woodruff et al. [68], Graff et al. [69]

WDR69 WD repeat domain 49 down Woodruff et al. [68], Graff et al. [69]

TNFSF10 tumor necrosis factor (ligand) superfamily,
member 10 (TRAIL)

down Woodruff et al. [68], Graff et al. [69]

IFI27 interferon, alpha-inducible protein 27 (ISG12) down Woodruff et al. [68], Graff et al. [69]

TRHDE thyrotropin-releasing hormone degrading enzyme down Woodruff et al. [68], Graff et al. [69]
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Reduced expression of Notch pathway in both smokers
and patients with COPD may be responsible for the ab-
normal differentiation of the airways [89].
Smoking induced epigenetic changes with corresponding

modulation of gene expression are demonstrated both in
airway epithelium and alveolar macrophages [90, 91]. Buro-
Auriemma with his team [90] identified 204 unique genes
differentially methylated in the small airway epithelium
DNA of smokers compared with nonsmokers. Cigarette
smoking is also associated with genome wide changes
inpulmonary macrophage DNA methylation, in particular
at the aryl hydrocarbon receptor repressor (AHRR), a
known tumor suppressor that may be critical in moderating
AHR role in oncogenesisand altered immune function [91].

Structural changes
Since 1957, numerous studies have proved the structural
changes of airway epithelium brought by smoking [92].

An increase in thickness of the epithelium with an eleva-
tion in size and number of goblet cells, a decrease in the
length ofcilia, loss of cilia and occurrence of cells with
atypical nuclei were revealed in both tracheal and bron-
chial epithelium of smokers compared with nonsmokers
[92–94]. Besides, the percentages of individuals exhibit-
ing precancerouslesions including basal cell hyperplasia
and squamous metaplasia, increased with the habit of
cigarette smoking [93, 95]. Robust structural changes in
airway epithelial mitochondria induced by cigarette
smoke were detected, such as fragmentation, branching
and quantity of cristae [96]. While the changes as a con-
sequence of tobacco mentioned above could be revers-
ible. Bertram and Rogers [97] demonstrated that the
structural recovery occurred in bronchial epithelium in
people who stopped smoking for over two years. Healthy
smokers’ cilia was much shorter than non-smokers’
which may affect the mucociliary clearance [84]. The

Table 1 Up- and down- regulated genes (>2.0 fold change) in alveolar macrophages of ‘healthy smokers’ (Continued)

MYB v-myb myeloblastosis viral oncogene homolog down Woodruff et al. [68], Graff et al. [69], Philibert et al. [70]

ARHGAP24 Rho GTPase activating protein 24 down Woodruff et al. [68], Graff et al. [69]

TRPC6 transient receptor potential cation channel,subfamily C, member 6 down Woodruff et al. [68], Graff et al. [69]

ITHIHS inter-alpha (globulin) inhibitor H5 down Woodruff et al. [68], Graff et al. [69]
aHS: healthy smokers, bNS: nonsmokers

Table 2 Up- and down- regulated genes in airway epithelium of ‘healthy smokers’ reported

Epithelium Gene symbol Description Regulation
(HSa/NSb)

Reference

SAEc/LAEd G6pd glucose-6-phosphatedehydrogenase up Carolan et al. [78], Hackett et al. [79]

SAE/LAE GCLC Glutamate-cysteineligase, catalytic subunit up Carolan et al. [78], Hackett et al. [79], Spira et al. [82]

SAE/LAE GPx2 Glutathioneperoxidase 2 up Carolan et al. [78], Hackett et al. [79], Harvey et al. [80],
Turetz et al. [81], Spira et al. [82], Zhang et al. [83]

SAE GSR Glutathionereductase up Carolan et al. [78], Hackett et al. [79]

SAE/LAE ADH7 Alcoholdehydrogenase 7, mu or
sigmapolypeptide

up Carolan et al. [78], Hackett et al. [79], Harvey et al. [80],
Turetz et al. [81], Spira et al. [82]

SAE/LAE AKR1B1 aldo-keto reductasefamily 1, memberB1 up Carolan et al. [78], Hackett et al. [79], Harvey et al. [80],
Spira et al. [82], Zhang et al. [83]

SAE/LAE AKR1C aldo-keto reductasefamily 1, memberC up Carolan et al. [78], Hackett et al. [79], Harvey et al. [80],
Turetz et al. [81], Spira et al. [82], Zhang et al. [83]

SAE TXNRD1 Thioredoxinreductase 1 up Carolan et al. [78], Hackett et al. [79], Spira et al. [82]

SAE PGD Phosphogluconatedehydrogenase up Carolan et al. [78], Hackett et al. [79]

SAE TALDO1 transaldolase 1 up Carolan et al. [78], Hackett et al. [79]

SAE CYP1B1 cytochrome P450, family 1, subfamilyB,
polypeptide1

up Carolan et al. [78], Hackett et al. [79], Harvey et al. [80],
Spira et al. [82], Zhang et al. [83]

SAE/LAE CX3CLI Chemokine(C-X3-C motif)ligand 1 down Harvey et al. [80], Turetz et al. [81], Spira et al. [82]

SAE/LAE ALDH3A1 Aldehydedehydrogenase 3family, memberA1 up Harvey et al. [80], Turetz et al. [81], Spira et al. [82]

SAE/LAE NQO1 NAD(P)Hdehydrogenase, quinone 1 up Harvey et al. [80], Spira et al. [82], Zhang et al. [83]

LAE SLIT slit homolog (Drosophila) up Turetz et al. [81], Spira et al. [82]

SAE UCHL1 Ubiquitincarboxylterminal, esteraseL1 down Harvey et al. [80], Spira et al. [82]
aHS: healthy smokers, bNS: nonsmokers
cSAE: small airway epithelium, dLAE: large airway epithelium
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reticular basement membrane of both smokers and indi-
viduals with COPD showed fragmentation and splitting
[98]. More vessels in the reticular basement membrane
and fewer vessels in the lamina propria were also found
in current smokers compared to healthy nonsmokers
[98], suggesting airway remodelling in smokers.

Pulmonary dysfunction
Smoking is regarded as the major contribution to pul-
monary dysfunction, and this deterioration of lung func-
tion in smokers is far in excess of that predicted by age
[99]. The ventilation of the upper zones of the lungs was
significantly less than that of the lower zones in
smokers, suggesting the upper zone abnormalities found
in the group of smokers were consistent with the devel-
opment of early emphysema [100]. Although, parameters
of pulmonary function test of healthy smokers are within
the normal range, some abnormalities are detected by
pulmonologiosts when compared with lifelong non-
smokers. Reduced forced expiratory volume in one
second(FEV1), peak expiratory flow(PEF) and the ratio
of FEV1 to forced vital capacity(FVC, FEV1/FVC),
decreased diffusing capacity for CO and forced expira-
tory flows at high lung volume, increase in total lung
capacity(TLC), the ratio of residual volume(RV) to TLC
(RV/TLC) and the ratio of functional residual capaci-
ty(FRC) to TLC(FRC/TLC) were demonstrated in smokers
[101–104]. Forced expiratory time for the last 0.5 l of the
forced vital capacity was significantly higher in the heavy
smokers (those who had smoked a lifetime total of more
than 10,000 cigarettes) than the nonsmokers [102]. A
linear association between smoking years and reduced
level of FEV1 and FVC was reported [105] and the decline
in FEV1 can also be detected in teenage smokers [106].
Moreover, smoking cessation not only stopped the
smoking-induced fast decline in lung function, but even
led to some reversal toward nonsmoking values [107].
Frette with his team [108] found that smokers who quit
before age 40 had an age- and height-adjusted FEV1 that
did not differ from that of never smokers in either men or
women. In summary, these findings confirm the deleteri-
ous effect on lung function of smokers whose spirometry
values are within normal range and prove a beneficial
effect of quitting smoking at an early age.

Systemic effects
Systemic inflammation
Numerous studies have shown significantly increased
level of white blood cell [109–111], TNF-α [26, 112] and
C-reactive protein [113, 114] in serum of asymptomatic
smokers with normal lung function, providing direct evi-
dence of systemic inflammation in smokers. However,
most of researches found no differences in the subsets of
T-lymphocytes which mediate abnormal intrapulmonary

inflammation and have been identified as a key compo-
nent in the development and the progression of COPD
in peripheral blood [29, 109, 115]. But, Miller et al. [116]
detected the decreased level of CD4+T lymphocytes and
increased level of CD8+T lymphocytes in peripheral
blood from heavy smokers which may need further
studies.

Oxidative damage
Many researches have confirmed the systemic oxidative
damage and overall decrease in antioxidant activity in
smokers as compared with nonsmokers. Antwerpen et
al. [117] demonstrated that smoking was associated with
significantly increased phagocyte-derived ROS-
generation. The mean plasma malondialdehyde(MDA)
level, a parameter of lipid peroxidation caused by the ox-
idants, was higher both in healthy smokers and smokers
with COPD than in healthy nonsmokers [118]. Besides,
after 4 week smoking cessation,significant decreases in
MDA were detected [119]. Significantly lower CuZnSOD
and Se-GSH-Px activities have been reported both in
teenage and adult smokers than non-smokers [120, 121].
Concentrations of serum antioxidants, such as folate,
vitamin C and vitamin E, have been proved to be lower
in chronic smokers [122, 123], confirming again smoking
induced damage to the oxidant defense system.

Endothelial dysfunction
Oxidative damage brought by smoking is closely related to
endothelial dysfunction. Guthikonda with his colleagues
[124] demonstrated xanthine oxidase contributes import-
antly to endothelial dysfunction caused by cigarette smok-
ing. Hirai et al. [125] found that the impaired endothelial
dysfunction in smokers could be improved by the antioxi-
dant, vitamin C. In fact, lots of studies have proved endo-
thelial dysfunction measured by flow-mediated dilation
(FMD) in healthy smokers [126, 127]. Moreover, Mendes
with his team [128] found that impaired airway vascular
endothelial function nmight precede endothelial dysfunc-
tion of other areas in healthy smokers. Celermajer et al.
[126] demonstrated an inverse relation of FMD and lifetime
cigarette dose smoked and former smokers had higher
FMD values than current smokers, indicating potentially
reversible smoking induced endothelial dysfunction.
Reduced number of circulating endothelial progenitor

cells (EPCs) is reported [129]. The number of EPCs is
also indicated to be correlated with endothelial function
as measured by FMD [130]. Furthermore, Michaud’s
study [131] demonstrated the impairment of EPC differ-
entiation and functional activities brought by smoking
and this impairment might be associated with lower
serum antioxidant levels. A recent study also identifies
that epigenetic regulation of DNA damage and senescence
are closely related to the endothelial progenitors’
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dysfunction in both smokers and COPD patients [132].
While, smoking induced effect on circulating EPCs was
reversible. Kondo et al. [133] observed that the recovery of
EPC levels was greater in light smokers than in heavy
smokers, suggesting the significance of smoking cessation.

Effects of cardiovascular, nervous-mental, endocrine and
reproductive system
Compared with nonsmokers, smokers have significantly
elevated risk factors for cardiovascular diseases. Al-
though, healthy smokers’ heart rate, blood pressure and
level of serum lipid and lipoprotein are in the normal
range, increases in heart rate and blood pressure are de-
tected as compared with nonsmokers [134, 135], they
also have higher serum concentrations of cholesterol,
triglycerides, very low density lipoprotein cholesterol,
and low density lipoprotein cholesterol and lower serum
concentrations of high density lipoprotein cholesterol
and apolipoprotein AI [136]. Endothelial dysfunction
and elevated level of white blood cell in healthy smokers
mentioned above also contribute a lot to the onset of
cardiovascular diseases [137] and become an independ-
ent risk factor for all atherosclerotic cardiovascular dis-
eases [138].
Among the healthy smokers who don’t have any metal

illnesses including alcohol or drug abuse/dependence with
normal brain MRI results, abnormalities are still detected
in their nervous-mental system. Hao with his team [139]
found that neural function was less synchronized in the
right inferior frontal cortex and more synchronized in the
left superior parietal lobe in chronic smokers compared to
nonsmokers, indicating lacking of control over reward-
related behavior and smoking urges respectively. Signifi-
cantly greater rate atrophy over 2-years than nonsmokers
in multiple brain regions associated with the early stages
of Alzheimer Disease were found in healthy, cognitively-
intact elderly smokers [140]. Furthermore, chronic
smokers were demonstrated to have a worse visual mem-
ory and poorer sleep quality compared with lifelong non-
smokers [141]. Jiménez-Ruiz C.A. et al. [142] found that
10.2% of healthy smokers had high dependence on
nicotine evaluated by the Fagerstrom Test for Nicotine
Dependence (FTND) which is a quantitative scale used
commonly for the definition of nicotine dependence.
Actually, tobacco dependence itself is not only a bad habit,
but a chronic disease [143].
Attvall et al. [144] demonstrated that smoking could

impair insulin action and lead to insulin resistance in
healthy smokers even their blood glucose was normal.
Smoking cessation improving insulin sensitivity in
healthy middle-aged men were also reported [145]. Be-
sides, detrimental effects on reproductive system
brought by smoking are detected. Mostafa with his col-
leagues [146] found that smoking had negative effects

on sperm motility, viability, DNA fragmentation, seminal
zinc levels, and semen reactive oxygen species levels,
even in healthy fertile smokers.

Conclusion
The biochemical analysis of the induced sputum, expired
breath condensate, bronchoalveolar lavage, biopsies of
lung tissue and peripheral blood from healthy smokers are
strongly enough to prove the exist of local and systemic
inflammation. Genetic alterations detected in the lung tis-
sue of healthy smokers may contribute to smoking-related
susceptibility to lung diseases, such as emphysema and
lung cancer. The structural changes in respiratory system,
as well as the decline in lung function as compared with
nonsmokers demonstrate again smoking induced negative
effects on healthy smokers which accelerate the onset of
respiratory disorders. Therefore, healthy smokers who are
normal with spirometry, radiographic images and routine
physical exam are not really healthy. Smoking cessation as
an early intervention may lead to some reversal toward
the better health of lifelong nonsmokers.
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